92
Views
1
CrossRef citations to date
0
Altmetric
Technical Reports

Structure Determination from Disordered Ensembles of Identical Particles

&
Pages 20-25 | Published online: 22 Mar 2013
 

Abstract

X-ray scattering techniques have long ranked among the most important methods for studying amorphous materials and other highly disordered targets. Well-established X-ray scattering methods often consist of recording time-averaged scattered intensity maps which, under the Born approximation, straightforwardly reveal information about ensemble-averaged, two-point, electron density correlations within the target. In the case of isotropic targets that consist of disordered ensembles of randomly oriented particles, scattering data are typically reduced to a histogram of electron pair distances (the “pair distribution function,” or PDF). While the information contained in the one-dimensional PDF is limited, a rich set of structural properties can often be determined straightforwardly (e.g., radius of gyration, surface area, short-range correlation length scales, fractal dimension). One of the well-known pinnacles of the methodology is the application of small-angle X-ray scattering (SAXS) to solutions of identical biological macromolecules [Citation1Citation3], which is now routinely used to rapidly determine ab initio low-resolution (>1 nm) protein structures [Citation4].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 355.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.