98
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of suitability and detection range of fluorescent dye-loaded nanoliposomes for sensitive and rapid sensing of wide ranging osmolarities

, &
Pages 300-313 | Received 27 Jun 2022, Accepted 02 Jan 2023, Published online: 06 Feb 2023
 

Abstract

Measurement of osmolarity is critical for optimizing bioprocesses including antibody production and detecting pathologies. Thus, rapid, sensitive, and in situ sensing of osmolarity is desirable. This study aims to develop and assess the suitability of calcein- and sulforhodamine-loaded nanoliposomes for ratiometric sensing of osmolarity by fluorescence spectroscopy and evaluate the range of detection. The detection is based on concentration-dependent self-quenching of calcein fluorescence (sensor dye at 6–15 mM) and concentration-independent fluorescence of sulforhodamine (reference dye) due to osmotic shrinkage of the nanoliposomes when exposed to hyperosmotic solutions. Using mathematical modeling, 6 mM calcein loading was found to be optimal to sense osmolarity between 300 and 3000 mOsM. Calcein (6 mM)- and sulforhodamine (2 mM)-loaded nanoliposomes were produced by thin-film hydration and serial extrusion. The nanoliposomes were unilamellar, spherical (108 ± 9 nm), and uniform in size (polydispersity index [PDI] 0.12 ± 0.04). Their shrinkage induced by exposure to hyperosmotic solutions led to rapid self-quenching of calcein fluorescence (FGreen), but no effect on sulforhodamine fluorescence (FRed) was observed. FGreen/FRed decreased linearly with increasing osmolarity, obeying Boyle van’t Hoff’s relationship, thus proving that the nanoliposomes are osmosensitive. A calibration curve was generated to compute osmolarity based on FGreen/FRed measurements. As a proof-of-concept, dynamic changes in osmolarity in a yeast-based fermentation process was demonstrated. Thus, the nanoliposomes have great potential as sensors to rapidly and sensitively measure wide-ranging osmolarities.

Acknowledgments

The authors acknowledge Sree Siddaganga Education Society, Tumakuru, for funding. We thank Dr. Nandakumar D N of NIMHANS, Bengaluru for providing fluorescence spectrophotometer facility for characterization of nanoliposomes, Mr. Gejo Gangadharan, and Mr. Hemanth Kumar T for guiding the characterization studies and Ms. Thanuja M Y for guiding nanoliposomes preparation.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by Sree Siddaganga Education Society, Tumakuru.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,410.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.