274
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Magnetic targeted drug delivery carriers encapsulated with pH-sensitive polymer: synthesis, characterization and in vitro doxorubicin release studies

, , , &
Pages 1303-1316 | Received 23 Mar 2016, Accepted 17 May 2016, Published online: 22 Jun 2016
 

Abstract

Targeted and efficient delivery of drug to tumor is one of the crucial issues in cancer therapy. In this work, we have successfully designed and prepared the pH-sensitive magnetic nanoparticles (MNPs) as targeted anticancer drug carriers, in which the MNPs were coated by poly(acrylic acid) (PAA) and the obtained PAA@MNPs exhibited a size within 100 nm, good stability, and superparamagnetic responsibility (Ms 45.97 emu/g). Doxorubicin (DOX) can be successfully loaded onto MNPs via electrostatic interaction, and the drug loading content and loading efficiency are 26.4 and 88.1%, respectively. Moreover, the release studies showed that the drug-loaded carriers (MNPs-DOX) had excellent pH sensitivity, 75.6% of the loaded DOX was released at pH 4.0 within 48 h. Importantly, MTT assays in HUVEC and MCF-7 cells demonstrated that MNPs-DOX exhibited high anti-tumor activity, while the PAA@MNPs were practically nontoxic. Thus, our results revealed that PAA@MNPs would be a competitive candidate for biomedical application and MNPs-DOX could be used in targeted cancer therapy.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 503.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.