315
Views
1
CrossRef citations to date
0
Altmetric
Articles

Facile synthesis of 3D silk fibroin scaffolds with tunable properties for regenerative medicine

, , , &
Pages 1272-1286 | Received 14 Mar 2020, Accepted 18 Apr 2020, Published online: 07 May 2020
 

Abstract

Silk fibroin (SF) porous scaffolds provide mechanical support and biochemical signals to encourage cell attachment and modify biological performance. The available methods for the preparation of SF scaffolds are still required. The crosslinkers used are likely to impact the biocompatibility. Herein, water-insoluble SF scaffolds were prepared by physical methods. The phosphate solution promoted SF molecules aggregate from SF/heparin mixed solution. Then SF scaffolds were prepared in centrifuge tubes under different centrifugal speed. The phosphate was leached from the scaffolds, leaving porous structure. The centrifugal force produced shear-induced silk crystallinity to tune the mechanical performance like the natural silkworm gland. The relationship between performance and second structure of the scaffolds have been revealed by X-ray Diffraction (XRD) and deconvoluting Fourier Transform Infrared spectroscopy (FTIR). Due to changes in the β-sheet content, pore structure, mechanical strength, and drug-loaded behavior was adjustable. The scaffolds performed excellent on the Activated Partial Thromboplastin Time (APTT) value, and it can keep sustainable released for 7 days. The scaffolds prepared in mild environment showed tunable stiffness, good anticoagulation, and improved cell compatibility, suggesting its potential application in regenerative medicine.

Acknowledgements

The author(s) disclosed receipt of the financial support for the research, authorship, and/or publication of this article.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was financially supported by the National Natural Science Foundation of China under grant no.21371023 and Beijing Institute of Technology Research Fund Program for Young Scholars (3090012221914).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 503.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.