102
Views
0
CrossRef citations to date
0
Altmetric
Articles

Physicochemical and biological properties of nanohydroxyapatite grafted with star-shaped poly(ε-caprolactone)

, , , , & ORCID Icon
Pages 2353-2384 | Received 21 May 2022, Accepted 19 Jul 2022, Published online: 01 Aug 2022
 

Abstract

To overcome the disadvantages generated by the lack of interfacial bonding between hydroxyapatite nanocrystals (HAPN) and agglomeration of particles in the development of biodegradable nanocomposites a chemical grafting method was applied to modify the surface of HAPN through grafting of the three-arms star-shaped poly(ε-caprolactone) (SPCL) onto the nanoparticles. The chemical grafting of SPCL onto HAPN (SPCL-g-HAPN) has been investigated using Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy (TEM), photoelectron spectroscopy, X-ray diffraction, zeta potential (ZP) and contact angle (CA). TEM micrographs of the SPCL-g-HAPN revealed the existence of hybrid organic/inorganic (O/I) nanoscale domains. The results of albumin (HSA) and fibrinogen (HFb) adsorption indicate resistance to HFb adsorption by SPCL-g-HAPN relatively to unmodified HAPN. The ZP and CA measurement suggest a heterogeneous topology for SPCL-g-HAPN likely due to the existence of hydrophobic-hydrophilic regions on the nanocomposite surface. The enzyme degradation by cholesterol esterase and lipase indicates that the rates of hydrolysis for SPCL-g-HAPN were very slow relative to the SPCL/HAPN blends. The in vitro biological studies showed that the human osteoblast-like cells (MG-63) cells had normal morphology and they were able to attach and spread out on SPCL-g-HAPN surfaces. A higher overall cellular proliferation was observed on SPCL-g-HAPN scaffolds compared to pure HAPN or SPCL materials.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The National Council for Scientific and Technological Development (CNPq) financially supported this study under grant 307609/2018-9.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 503.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.