116
Views
2
CrossRef citations to date
0
Altmetric
Articles

Compact BPF and diplexer using capacitively loaded λ/4 shorted meander line resonator

&
Pages 112-118 | Received 01 Jul 2013, Accepted 11 Oct 2013, Published online: 20 Nov 2013
 

Abstract

This paper presents a novel capacitively loaded λ/4 shorted meander line resonator (SMLR). The grounded microstrip lines inserted inside the spaces of SMLR can construct the grounded inter-digital capacitors, which leads to a lower fundamental resonance frequency of capacitively loaded λ/4 SMLR than the λ/4 SMLR. Based on the proposed resonator, two compact fourth order Chebychev response bandpass filters (BPFs) centered at 0.9/1.57 GHz with 3 dB fractional bandwidth (FBW) of 12.5%/15% is designed and fabricated firstly. Then, on the basis of these two BPFs, a BPF-based diplexer operating at 0.9/1.57 GHz with 3 dB FBW of 12.5%/15% is exploited. The designed diplexer employs a novel hybrid microstrip line and phase shifter common T-junction. The phase shifter is implemented by quasi-lumped elements. The designed diplexer exhibits a very high isolation up to 73/68 dB at two channels, respectively. The fabricated diplexer also has a compact size of 0.239λg × 0.06λg. Good agreement can be observed between the simulations and the measurements.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.