196
Views
5
CrossRef citations to date
0
Altmetric
Articles

Determination of optimum bistatic angle for radar target identification

, , &
Pages 551-562 | Received 03 Oct 2013, Accepted 21 Dec 2013, Published online: 10 Jan 2014
 

Abstract

The transmitter and receiver positions of a bistatic radar are highly influential on its performance in radar target identification since the radar cross-section of a target varies with these positions. In this study, radar target identification performance using calculated bistatic scattering data for three full-scale models and measured data for four-scale-model targets is analyzed and compared. FFT-based CLEAN is used for shift-invariant feature extraction from the bistatic scattering data of each target, and a multilayered perceptron neural network is used as a classifier. The optimum receiver position is found by comparing the calculated identification probabilities while changing the position of the bistatic radar receiver. The identification results using calculated data and measured data show that an optimally positioned bistatic radar yields better identification results, demonstrating the importance of the positions of the transmitter and receiver for bistatic radar.

Acknowledgment

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science & Technology (No. NRF-2012R1A1A4A009094).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.