125
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design of a tunable nano sensor based on terahertz graphene-based absorbers

, &
Pages 131-140 | Received 14 Feb 2021, Accepted 17 Jul 2021, Published online: 04 Aug 2021
 

Abstract

In this paper, tunable and efficient absorbers are proposed based on graphene–metal nano structures. The designed structures are consisted of multi layers of graphene (ring- and plate-shaped) and gold (5*5 cells) on the background of silica. By introducing different ring-shaped graphene layers (one, two or three), the near unity absorption coefficient can be achieved. The effects of different parameters like the distance, radius and chemical potential (h1, Rin1, EfR1, h2, Rin2, EfR2, h3, Rin3, EfR3) on the absorption spectrum (wavelength and value) are also considered. The best resonant peak (near unity) is obtained for the structure with three ring-shaped graphene layers. The final proposed structure (with three rings) can be utilized as an effective sensor for detecting materials with different refractive indices (from 1. to 1.5) with sensitivity of 100 (nm/RIU). The designed structure can be applied as a strong absorber or sensitive sensor in nano-optical systems.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.