77
Views
0
CrossRef citations to date
0
Altmetric
ARTICLES

LMS and RLS beamforming algorithms based linear antenna array with known mutual coupling

&
Pages 1449-1462 | Received 14 Nov 2022, Accepted 20 Aug 2023, Published online: 15 Sep 2023
 

Abstract

This study explores the application of LMS and RLS algorithms in adaptive beamforming for a linear array of half wavelength dipole (HWD) antennas with known mutual coupling. The research initiates by deriving analytical expressions for the covariance matrix of signal impinging on an HWD antenna array, accounting for mutual coupling effects. Leveraging these expressions, we calculate the weights for both LMS and RLS algorithms, enabling the evaluation of the overall far-field radiation patterns of the HWD antenna array. The results demonstrate that these algorithms effectively steer the main lobe of the radiation pattern towards the desired user while creating nulls in the direction of undesired users. Notably, simulations indicate that the proposed compensation method enhances the performance of beamforming algorithms, particularly when considering mutual coupling effects. Specifically, the LMS algorithm outperforms the RLS algorithm in reducing interference, resulting in lower side lobe levels (SLL) in the radiation pattern.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.