127
Views
0
CrossRef citations to date
0
Altmetric
Articles

Polarization-independent wideband meta-material absorber based on resistor-loaded hexagonal ring resonators

&
Pages 264-281 | Received 03 Jul 2023, Accepted 27 Dec 2023, Published online: 10 Jan 2024
 

Abstract

A polarization-independent meta-material-based absorber with wideband response is presented in this study. The proposed absorber’s unit cell consists of a resistance-loaded metallic hexagonal ring and four rectangular metal strips placed inside the hexagonal ring patterned on the upper surface of a dielectric substrate. The absorber exhibits wideband absorption with absorptivity more than 90% in the frequency range 7.14 to 13.68 GHz. The Full-Width Half Maxima (FWHM) of the absorber is 8.8 GHz (5.2–14 GHz). The four-fold symmetrical structure of the absorber confirms polarization-insensitive behaviour. The absorber performance is also validated with fabrication and measurement. There is a fair degree of agreement between simulated and measured results. The novelty of the proposed absorber is having wideband absorption with high packing density due to its hexagonal shape. The metamaterial absorber finds its use in defence-related applications such as radar surveillance, stealth technology, terrestrial communications, and satellite communication.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.