177
Views
5
CrossRef citations to date
0
Altmetric
Articles

Effect of matrix ductility on fatigue strength of unidirectional jute spun yarns impregnated with biodegradable plastics

, , , &
Pages 235-247 | Received 05 Aug 2016, Accepted 16 Sep 2017, Published online: 20 Oct 2017
 

Abstract

Natural fiber-reinforced composites are carbon-neutral materials that are anticipated for use as an alternative to glass fiber-reinforced plastics. This study investigated the effects of matrix ductility on the fatigue strength of unidirectional jute spun yarns impregnated with biodegradable plastics. Polylactic acid (PLA) and polybutylene succinate (PBS) were used for the matrix. PLA is brittle, but it is widely used as a matrix of green composites. Because PBS has much higher ductility than that of PLA, it can be expected to have higher fatigue strength when subjected to the same strain amplitude as PLA. Fatigue tests were conducted with maximum stress set to 40–90% of the tensile strength. The stress ratio was set as 0.1. Results show that the matrix ductility strongly affects the fatigue strength and the fatigue mechanism of the composite. A matrix with better ductility was effective to improve fatigue strength.

Acknowledgments

We thank Prof Satoshi Kobayashi at Tokyo Metropolitan University for providing PBS pellets, and thank Mr Koji Iwata for providing experimental data of tensile tests of PBS specimens.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 751.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.