48
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Clockwork green—the circadian oscillator in Arabidopsis

, &
Pages 335-352 | Published online: 16 Feb 2007
 

Abstract

Although rhythmic leaf movement in a higher plant was the first physiological process recognised to be under circadian control, our understanding of the molecular drives underlying circadian rhythms in plants is still limited. Genetic screens for mutants impaired with regard to circadian rhythmicity have identified components critical for clock function in the model plant Arabidopsis thaliana, providing a snapshot of interconnected transcription-based feedback circuits at the core of the clockwork. Subsequently, the Arabidopsis genome project provided the basis for reverse genetic approaches to uncover additional gene products operating close to the core clockwork. We will review recent progress in the dissection of the molecular mechanisms within the basic oscillator and in the incorporation of additional components into the basic clock model.

Acknowledgements

Work in our laboratory is supported by the DFG through STA 653/2, FOR 387 (Redox Regulation) and SFB 613 (Physics of single molecule processes and molecular recognition in organic systems).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 387.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.