124
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Propagation of a partially coherent higher-order cosh-Gaussian beam through a paraxial ABCD optical system

&
Pages 193-198 | Received 15 Jul 2011, Accepted 22 Aug 2011, Published online: 12 Oct 2011
 

Abstract

Based on the generalized Huygens–Fresnel integral, analytical expressions for the mutual coherence function, the spatial complex degree of coherence, and the effective size of a partially coherent higher-order cosh-Gaussian beam through a paraxial ABCD optical system have been derived. As a numerical example, the propagation of a partially coherent higher-order cosh-Gaussian beam through an optical Fourier-transforming system with a limiting aperture is illustrated. The normalized intensity distribution, the spatial complex degree of coherence, and the effective beam size for the partially coherent higher-order cosh-Gaussian beam are numerically demonstrated in the observation plane. The influences of the spatial coherence length and the limiting aperture on the normalized intensity distribution, the spatial complex degree of coherence, and the effective beam size are also examined in detail.

Acknowledgements

This research was supported by National Natural Science Foundation of China under Grant No. 10974179 and Zhejiang Provincial Natural Science Foundation of China under Grant No. Y1090073.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 922.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.