111
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Fabrication of narrow-striped InAs/GaAs quantum dot laser with wet etching technique

, , , , , & show all
Pages 1015-1020 | Received 17 Apr 2013, Accepted 15 Jul 2013, Published online: 05 Sep 2013
 

Abstract

An InAs/GaAs quantum dot laser, fabricated with a narrow-striped width of 6 μm by a wet etching technique, is reported. The etching solutions are composed of three components, i.e. phosphoric acid, hydrogen peroxide, and deionized water. We observed that the unavoidable undercutting was changed with the ratio of etching solution in the GaAs materials. By taking a suitable ratio of etching solution, good performance of quantum dot laser with a size of 6 μm × 700 μm was achieved for fabrication at room temperature. Under continuous wave mode, the lasing wavelength exhibited a single mode, which is located in the region of 1051 nm. In contrast, multimode lasing with a series of non-lasing gaps appeared and the spectra were gradually broadened to the high energy side by increasing the injection current. The laser has one facet power more than 22 mW, with a slope efficiency of 140 mW/A, just a little above threshold current.

Acknowledgements

This work is financially supported by the National Natural Foundation of China (Grant Nos. 61204058, 10990103, 61021064 and 61240015) and by the Foundation of Shenzhen Innovation Program (Grant No. JCYJ20130401095559823).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 922.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.