151
Views
0
CrossRef citations to date
0
Altmetric
Articles

Hollow Gaussian beams with the power-exponent-phase vortex

, , &
Pages 2186-2194 | Received 08 Dec 2017, Accepted 05 Jun 2018, Published online: 06 Aug 2018
 

ABSTRACT

A kind of hollow Gaussian beams with the power-exponent-phase vortex is introduced. Based on the Collins integral, an analytical expression of a hollow Gaussian beam with the power-exponent-phase vortex passing through a paraxial optical system described by the ABCD matrix approach is derived. The analytical expressions for the beam propagation factors and the orbital angular momentum density of such hollow vortex Gaussian beam passing through a paraxial optical system described by the ABCD matrix approach are also derived, respectively. As a numerical example, the propagation properties of a hollow Gaussian beam with the power-exponent-phase vortex are demonstrated in free space. The evolutions of the normalized intensity, the phase and the orbital angular momentum density distributions are investigated, respectively. The influences of the power order and the topological charge on the beam propagation factors in the x- and y-directions are analysed. The introduced hollow Gaussian beam has potential applications in the atom manipulation and the optical trapping.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 922.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.