85
Views
0
CrossRef citations to date
0
Altmetric
Articles

Propagation properties of Airy–Gaussian beams in centrosymmetric photorefractive media

, , , , &
Pages 2243-2249 | Received 15 Apr 2018, Accepted 03 Jul 2018, Published online: 10 Aug 2018
 

ABSTRACT

Based on the biased centrosymmetric photorefractive media, we investigate numerically the propagation and interaction properties of Airy–Gaussian beams. The single Airy–Gaussian beam forms the one-component breather with the help of the photorefractive nonlinearity. The interaction properties of two Airy–Gaussian beams can be controlled by adjusting the relative parameters, such as photorefractive nonlinearity, transverse distance and relative phase of two incident beams. The two-component breather with ladder structure can be observed for both the in-phase and out-of-phase cases when the self-acceleration property is balanced by the photorefractive nonlinearity. The one- or three-component breathers can be observed for the in-phase case only when the transverse distance takes a certain range.

Additional information

Funding

This work was supported by the Natural Science Foundation of Shanxi Province, China (Grant No. 2011011003-2) and the Doctor Scientific Research Fund of Yuncheng University (Grant No. YQ-2015011).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 922.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.