124
Views
5
CrossRef citations to date
0
Altmetric
Articles

Optical watermark scheme based on singular value decomposition ghost imaging and particle swarm optimization algorithm

, , &
Pages 1059-1071 | Received 01 Jun 2020, Accepted 10 Aug 2020, Published online: 26 Aug 2020
 

Abstract

An optical image watermarking algorithm, based on singular value decomposition (SVD) ghost imaging and multiple transforms, is designed. The watermark image is first encrypted by applying an SVD ghost imaging system, then the encrypted watermark is embedded into the cover image with the help of multiple transforms, including lifting wavelet transform (LWT), discrete cosine transform (DCT), discrete fractional angular transform (DFAT) and SVD. Four sub-band images are produced from the host image by LWT and DCT. The improved DFAT, whose scaling factors and parameter are optimized by particle swarm optimization algorithm, is operated in the new matrix. Afterwards, SVD is executed in the two-part image and the encrypted watermark is embedded in the host image by mutual operation of different matrices. Simulation results validate that the proposed watermark scheme is superior in the aspects of security, robustness and imperceptibility.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by National Natural Science Foundation of China [grant numbers 61462061 and 61861029].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 922.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.