255
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

The cross-slip energy unresolved

Pages 505-515 | Received 01 May 2009, Accepted 03 Jun 2009, Published online: 29 Jul 2009
 

Abstract

Recent progress in dislocation dynamics modeling of work hardening has reawakened the interest in cross-slip, which can lead to dynamic recovery in fcc crystals. It is pointed out that neither continuum theory nor atomic modeling at present are able to reliably derive the reaction path and the activation energy of cross-slip. Classical continuum theory with the concept of Volterra dislocations fails, because during the nucleation process the effective Burgers vectors of the partials are not conserved and the specific atomic misfit energy changes. Atomistic modeling fails, because the ad hoc potentials used at present are unable to reliably predict the energies for atomic displacements far from equilibrium. It is, however, possible to derive the stress conditions necessary in order that cross-slip can spread. An important contribution to the driving force results from the ‘Escaig stress’ acting on the edge components of the partials forming a dissociated screw dislocation and changing their separation. Contrary to the widely held assumption, the driving force is however independent of whether the dislocation in the cross-slip plane will be expanded or compressed.

Acknowledgement

Helpful discussion on the role of cross-slip in DD simulations with Prof. L. Kubin are gratefully acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.