547
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Microstructural characterization of the M23C6 carbide in a long-term aged Ni-based superalloy

, , , &
Pages 43-49 | Received 31 Aug 2016, Accepted 07 Dec 2016, Published online: 09 Jan 2017
 

Abstract

The microstructural features of M23C6 carbide in a long-term aged heat- and corrosion-resistant Ni-based superalloy have been investigated in detail using various kinds of transmission electron microscope (TEM) techniques. It is found that TEM contrast, which is related to structural and chemical inhomogeneities inside the grains, always exists in the interior of grains in the alloy. The structure of these inhomogeneous regions has been determined to be the same as that of the γ′ and t-M23C6 phases, where t-M23C6 indicates a transitional and metastable phase. Although possessing the same structure as the M23C6 phase, the chemical composition of the t-M23C6 is different from that of the M23C6 phase. Compared with M23C6, t-M23C6 is richer in Ni, Co, Al and Ti but poorer in W, Mo and Cr. This phenomenon of structural and chemical inhomogeneity demonstrates that pristine M23C6 carbide (p-M23C6) precipitated in standard heat-treated samples is unstable. Therefore, upon long-term ageing treatment, Ni, Co, Al and Ti may locally enrich inside the p-M23C6 phase, finally forming the γ′ phase, which can be described by the decomposition reaction p-M23C6 → M23C6 + γ′.

Funding

This work was financially supported by the National Natural Science Foundation of China [grant number 11327901].

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.