81
Views
0
CrossRef citations to date
0
Altmetric
Articles

Microjoining of Ti–Ni alloy and stainless steel using resistance brazing method aided by numerical simulation

&
Pages 417-424 | Received 09 Oct 2012, Accepted 24 May 2013, Published online: 04 Nov 2014
 

Abstract

A novel resistance brazing method aided by numerical simulation, in which the brazing is completed through several preliminary heatings and a subsequent final heating aided by the numerical simulation is presented. The preliminary heating is performed with a relatively low electric energy input so that the uniformity of the surface contact condition between two parts can be improved due to local melting and subsequent solidification and so that the electric current data can be acquired for preparing analytical conditions necessary to the numerical simulation. The final heating is performed with an energizing condition determined by the numerical simulation in advance. To prove the efficacy of the resistance brazing method aided by the numerical simulation, Ti–Ni alloy and type 304 stainless steel wires with diameters of 96 μm both were butt-joint brazed using Au–Cu brazing filler metal supplied with the individual metal plating. The brazed joints had tensile strengths ranging from 74 to 448 MPa in accordance with the energizing conditions.

Notes

1. Present address: Sumitomo Wiring Systems Ltd.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 726.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.