405
Views
12
CrossRef citations to date
0
Altmetric
Articles

Modelling hot rolling manufacturing process using soft computing techniques

, &
Pages 762-771 | Received 01 May 2012, Accepted 03 Jan 2013, Published online: 08 Mar 2013
 

Abstract

Steel making industry is becoming more competitive due to the high demand. In order to protect the market share, automation of the manufacturing industrial process is vital and represents a challenge. Empirical mathematical modelling of the process was used to design mill equipment, ensure productivity and service quality. This modelling approach shows many problems associated to complexity and time consumption. Evolutionary computing techniques show significant modelling capabilities on handling complex non-linear systems modelling. In this research, symbolic regression modelling via genetic programming is used to develop relatively simple mathematical models for the hot rolling industrial non-linear process. Three models are proposed for the rolling force, torque and slab temperature. A set of simple mathematical functions which represents the dynamical relationship between the input and output of these models shall be presented. Moreover, the performance of the symbolic regression models is compared to the known empirical models for the hot rolling system. A comparison with experimental data collected from the Ere[gtilde]li Iron and Steel Factory in Turkey is conducted for the verification of the promising model performance. Genetic programming shows better performance results compared to other soft computing approaches, such as neural networks and fuzzy logic.

Acknowledgements

The authors would like to thank Prof. Dr. Can Özsoy and the Ereli Iron and Steel Factory for providing the required technical assistant and the data for this developed research work.

Notes

1. HeuristicLab is a framework for heuristic and evolutionary algorithms that is developed by members of the Heuristic and Evolutionary Algorithms Laboratory (HEAL), http://dev.heuristiclab.com.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 528.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.