38
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Two phases based training method for designing codewords for a set of perceptrons with each perceptron having multi-pulse type activation function

, &
Pages 65-83 | Received 06 Sep 2021, Accepted 03 Dec 2022, Published online: 10 Jan 2023
 

ABSTRACT

This paper proposes a two phases-based training method to design the codewords to map the cluster indices of the input feature vectors to the outputs of the new perceptrons with the multi-pulse type activation functions. Our proposed method is applied to classify two types of the tachycardias. First, the total number of the new perceptrons is initialized as the dimensions of the input feature vectors. Next, a set of new perceptrons with each new perceptron having a single pulse type activation function is designed. Then, the new perceptrons with the multi-pulse type activation function are designed based on those new perceptrons with the single pulse type activation function. After that, the codewords are assigned according to the outputs of the new perceptrons with the multi-pulse type activation functions. Finally, a condition on the codewords is checked. The significance of this work is to guarantee to achieve the no classification error efficiently through using more than one new perceptron with the multi-pulse type activation if the feature space can be linearly partitioned into the multiple clusters. The computer numerical simulation results show that our proposed method outperforms the conventional perceptrons with the sign type activation function.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This paper was supported partly by the National Nature Science Foundation of China (no. U1701266, no. 61671163 and no. 62071128), the Team Project of the Education Ministry of the Guangdong Province (no. 2017KCXTD011), the Guangdong Higher Education Engineering Technology Research Center for Big Data on Manufacturing Knowledge Patent (no. 501130144), the Technological Innovation Key Climb Plan Project (no. pdjh2021a0148) and Hong Kong Innovation and Technology Commission, Enterprise Support Scheme (no. S/E/070/17).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 642.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.