231
Views
33
CrossRef citations to date
0
Altmetric
Original

Sensitivity to polychromatic UV-radiation of strains of deinococcus radiodurans differing in their DNA repair capacity

, , , &
Pages 601-611 | Received 12 Apr 2005, Accepted 16 Aug 2005, Published online: 03 Jul 2009
 

Abstract

Purpose: To characterize the ultraviolet (UV) sensitivity and establish the UV-induced DNA damage profile of cells of four Deinococcus radiodurans strains. The investigated strains differ in their radiation susceptibility, leading to a classification into a UV-sensitive (UVS78 and 1R1A) and a UV-resistant class (wild type strain R1 and 262).

Materials and methods: Deinococcus radiodurans cells were exposed in suspension to monochromatic 254 nm (UV-C) and polychromatic UV radiations; the surviving fraction was determined by assessing the ability of the bacteria to form colonies. The UV-induced DNA lesions were measured quantitatively using an accurate and highly specific assay that involves the combination of high performance liquid chromatography (HPLC) with tandem mass spectrometry detection.

Results: Analysis of the DNA photoproducts showed that the TC (6‐4) photoproduct and the TT and TC cyclobutane dimers were the major lesions induced by UV-C and UV-(>200 nm)-radiation. The UV-sensitive class was approx. 10 times more susceptible to UV-C and UV-(>200 nm)-radiations than the resistant class. Interestingly, the survival curves of all investigated strains become similar with longer UV wavelengths in the UV-(>315 nm)-radiation range. This observation suggests that the repair mechanisms of the UV-resistant class are not specifically effective for damage produced by UV of the >315 nm range. However, the initial amount of DNA photoproducts produced upon irradiation was found to be the same in resistant and sensitive strains for each wavelength range.

Conclusion: Compared to mammalian cells, the DNA of Deinococcus radiodurans cells is less susceptible to the photo-induced formation of thymine cyclobutane dimers as inferred from comparative analysis. The ongoing investigations may contribute to a better understanding of the mechanism of DNA photoprotection against the direct effects of UV radiation. This may be of interest in the present context of a possible continuous decrease in the ozone layer thickness.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,004.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.