323
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Enzymatic oxidative transformation of phenols by Trametes trogii laccases

, , &
Pages 1977-1985 | Received 25 Aug 2011, Accepted 22 Dec 2011, Published online: 13 Feb 2012
 

Abstract

The removal of toxic phenolic compounds from industrial wastewater is an important issue to be addressed. Their presence in water and soil has become a great environmental concern, and effective methods for their removal need to be addressed. The feasibility of applying laccases for the degradation of phenolic compounds has received increasing attention. In the present work, the transformation of five phenolic compounds (catechol, hydroxytyrosol, tyrosol, guaiacol and p-coumaric acid), the main constituents of a typical wastewater derived from an olive oil factory, by Trametes trogii laccases was studied at concentrations ranging between 0.2 and 1.6 mM. High-performance liquid chromatography analysis showed high degradation rates of phenolic compounds by T. trogii laccases. Independently of the used concentration, a complete transformation of guaiacol, p−coumaric acid, hydroxytyrosol and tyrosol occurred after 1 h of incubation. The transformation of catechol depends on its initial concentration. The liquid chromatography-mass spectrometry analysis showed that laccases catalysed transformation of p-coumaric acid and tyrosol, resulting in the formation of phenolic dimers. No reduction of enzyme activity has been observed during the oxidation of all phenolic compounds. These results suggest that the studied laccases were capable of efficiently removing phenolic compounds, as well as catalysing the production of novel phenolic dimers.

Acknowledgements

The present research study was supported by the Ministry of Higher Education and Scientific Research (MHESR) of Tunisia under the Contract Program of the Environmental Bioprocesses Laboratory, Centre of Biotechnology Sfax. We thank Mr Adel Gargoubi for technical assistance with the HPLC analysis. We also thank Mr Hedi Issawi for the mass spectrometry facilities.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.