211
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Near-infrared spectroscopy as a potential tool with radial basis function for measurement of residual acrylamide in organic polymer

, , , &
Pages 91-99 | Received 17 Oct 2011, Accepted 29 Mar 2012, Published online: 21 May 2012
 

Abstract

Poly(acrylamide-co-diallyldimethylammonium chloride) (PDA), which is usually prepared by free radical polymerization of acrylamide monomer (AM) onto the cationic monomer dimethyl diallyl ammonium chloride (DMDAAC), has been widely applied to wastewater treatment; however, the free-radical polymerization is always incomplete with residual AM remaining in the PDA. The residual AM affects the PDA's performance while also posing as a potential threat to human health; therefore, during preparation of the PDA, the rapid detection of the residual AM plays an important role in controlling the residual AM while improving the PDA's performance. The objective of this study was to explore the possibilities for applying near-infrared (NIR) spectroscopy as a potential tool for detecting the residual AM in combination with a statistical tool. In this study, the radial basis function (RBF) network model as the statistical tool was combined with NIR spectroscopy for detection of the residual AM. The experimental results showed that five wavelengths in the NIR spectroscopy were the most important characteristic adsorption peaks, particular at 971.95 and 1077 nm. The simulation of the RBF model presented higher performance with R 2-value greater than 0.98, RMSEC and RMSEP less than 7.22×10−5 and coefficient of variation (CV) of the predicted residual AM less than 10%, which demonstrated the feasibility of the NIR spectroscopy being a rapid detection tool for prediction of the residual AM using the RBF model. Wavelet de-nosing was used for removing the interference/noise in the NIR spectroscopy and improved the generalization ability of the RBF model.

Acknowledgements

The authors are grateful for the financial support provided by the Scholarship Award for Excellent Doctoral Student granted by Ministry of Education (Project NO.0903005109081-7), China; National Natural Science Foundation of China (Project No. NSFC, 51078366, 21177164); and Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (Project NO.708071)

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.