323
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Photocatalytic reduction of hexavalent chromium with illuminated amorphous FeOOH

, , &
Pages 1132-1140 | Received 21 Jan 2014, Accepted 28 May 2014, Published online: 09 Dec 2014
 

Abstract

In this study, photocatalytic reduction of hexavalent chromium [Cr(VI)] by amorphous FeOOH was investigated with variations in FeOOH dosage, pH, initial Cr(VI) concentration, purging gas, organic compounds and initial hydrogen peroxide concentration. Reduction and adsorption were identified as important processes for the removal of Cr(VI). FeOOH dosage was also an important parameter for the removal of Cr(VI). As the FeOOH dosage increased up to 0.5 g/L, the removal of Cr(VI) was continuously enhanced and then decreased above 0.5 g/L due to increased blockage of the incident UV light. The removal efficiency of Cr(VI) decreased with increasing pH, initial Cr(VI) concentration and initial hydrogen peroxide concentration. While the removal efficiency of Cr(VI) increased with purging of nitrogen gas compared to that of oxygen gas because of less competition between dissolved oxygen and Cr(VI) with the electron in the conduction band of FeOOH. The photocatalytic reduction of Cr(VI) was increased in the presence of citric acid and phenol, while it was decreased in the presence of EDTA and oxalic acid. The reaction rate constant (kobs) was decreased from 0.2141 to 0.0026 1/min and the value of electrical energy per order (EEo) was increased from 22.41 to 1846.15 (kWh/m3) with increasing initial Cr(VI) concentration from 10 to 50 mg/L, respectively. Finally, proper photocatalytic activity was maintained even after five successive cycles.

Acknowledgements

The authors thank the Hamadan, Iran and Kurdistan Universities of Medical Sciences, Iran for all of the support provided.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.