871
Views
21
CrossRef citations to date
0
Altmetric
Articles

Production of polyhydroxyalkanoates (PHA) using sludge from different wastewater treatment processes and the potential for medical and pharmaceutical applications

, , , , , & show all
Pages 1779-1791 | Received 14 Mar 2016, Accepted 02 Apr 2017, Published online: 20 Apr 2017
 

ABSTRACT

In this study, seven strains of bacteria with polyhydroxyalkanoates (PHA)-producing ability (i.e. Bacillus cereus, Pseudomonas putida, Bacillus pumilus, Pseudomona huttiensis, Yersinia frederiksenii, Aeromonas ichthiosmia, and Sphingopyxis terrae) were isolated from various waste treatment plants in Hong Kong. Simultaneous wastewater treatment and PHA accumulation were successfully achieved in the bioreactors using isolated bacteria from different sludges. At the organic loading less than 13,000 ppm, more than 95% of chemical oxygen demand (COD) was removed by the isolated strains before the decrease of PHA accumulation. In addition, more than 95% of nitrogen removal was achieved by all isolated strains. In the bioreactors inoculated with single strains, the highest yields of poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxyvalerate) (PHV) were obtained in A. ichthiosmia (84 mg PHB/g) and B. cereus (69 mg/g), respectively. For the mixed culture, the highest yields of PHB and PHV were increased by 55% and 45% in the system inoculated with B. pumilus and A. ichthiosmia. The biologically synthesized PHA also showed the potential applications in drug delivery and tissue engineering. PHA-nanoparticles loaded with pyrene were successfully prepared by recombinant Escherichia coli. The results of in vitro drug release and biocompatibility tests revealed that nanoparticles could be used as safer dray carriers with high loading capacity and efficiency. After 20 days, the cells successfully grew on 90% of the PHA-aortic valve.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was financially supported by Research Grants Council of the Hong Kong SAR, China [PolyU 5272/01M, PolyU 5257/02M, PolyU 5403/03M, UGC/IDS25/15, and 18202116] and Dean's Research Fund of The Education University of Hong Kong [DRF/SFRS-8 and DRF/ECR-15].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.