398
Views
6
CrossRef citations to date
0
Altmetric
Articles

Electrochemical degradation of psychoactive drug caffeine in aqueous solution using graphite electrode

&
Pages 2373-2381 | Received 13 Mar 2017, Accepted 11 Jul 2017, Published online: 04 Oct 2017
 

ABSTRACT

In this study, the electrochemical degradation of caffeine (1,3,7-trimethylxanthine) in aqueous solution by a graphite electrode was investigated. Electrochemical degradation was tested by the cyclic voltametry technique performed in the potential range of −1.0 to +1.0 V versus Ag/AgCl, which confirmed the electro-activity of the selected caffeine. The effects of the treatment process variables, such as initial pH, current density, electrolyte concentration and electrolysis time on the degradation of caffeine, were explored. During the various stages of electrolysis, parameters such as chemical oxygen demand (COD), total organic carbon (TOC) were analysed. The maximum COD and TOC removal efficiencies of 85% and 77% were achieved at neutral pH 7, operated at a current density of 5.1 mA/cm2, electrolyte (Na2SO4) concentration of 0.1 M and at 240 min electrolysis time. From this study, it can be concluded that the electrochemical treatment process could effectively reduce the COD and TOC from the caffeine in aqueous medium. The degradation of the caffeine was confirmed by UV spectra, IR spectra and HPLC analysis.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.