591
Views
17
CrossRef citations to date
0
Altmetric
Articles

Evaluation of industrial by-products and natural minerals for phosphate adsorption from subsurface drainage

, , , , &
Pages 756-767 | Received 11 May 2017, Accepted 27 Sep 2017, Published online: 04 Dec 2017
 

ABSTRACT

Agricultural subsurface drainage has been recognized as an important pathway for phosphorus transport from soils to surface waters. Reactive permeable filters are a promising technology to remove phosphate from subsurface drainage. Three natural minerals (limestone, zeolite, and calcite) and five industrial by-products (steel slag, iron filings, and three recycled steel by-products) were evaluated for phosphate removal from subsurface drainage using batch adsorption experiments. Phosphate adsorption onto these materials was characterized by Langmuir isotherm and second-order kinetic models. The adsorption capacities increased by factors of 1.2–2.5 when temperature was increased from 5°C to 30°C. Industrial by-products exhibited phosphate adsorption capacities that were one order of magnitude higher than natural minerals. Medium-sized steel chips exhibited high phosphate adsorption capacities (1.64–3.38 mg/g) across different temperatures, pH values, organic matter concentrations, and real drainage water matrixes. The strong chemical bonds between phosphate and steel by-products prevented the release of adsorbed phosphate back to the solution. The steel by-product filter can be paired with a woodchip bioreactor for nitrate and phosphate removal. It is suggested that the phosphate filter be connected to a woodchip bioreactor after the startup phase to minimize the impact of dissolved organic matter on phosphate adsorption. The results of this study suggest that the low-cost steel by-products examined could be used as effective adsorption media for phosphate removal from subsurface drainage.

Acknowledgements

The authors thank Prairie Manufacturing, LLC (Sioux Falls, SD) for providing the steel by-products, Nucor Corporation (Norfolk, NE) for providing the steel slag, and Martin Marietta Aggregates (Fort Dodge, IA) for providing the limestone for this project.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This research was funded by the South Dakota Soybean Research and Promotion Council (SA1500521).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.