618
Views
27
CrossRef citations to date
0
Altmetric
Articles

Tungsten oxide as electrocatalyst for improved power generation and wastewater treatment in microbial fuel cell

&
Pages 2546-2553 | Received 12 Aug 2018, Accepted 23 Jan 2019, Published online: 12 Feb 2019
 

ABSTRACT

Microbial fuel cell (MFC) is a device that oxidizes the organic matter present in wastewater and simultaneously generates electricity from it. For practical applications, the power production of MFCs needs to be enhanced and the use of novel anode and cathode catalyst can certainly help in this regard. Such a novel catalyst, WO3, was explored as both anode and cathode catalyst in this study. Performance of MFCs was enhanced when WO3 was used as an electrocatalyst. The maximum power density of MFC was increased by five times when WO3 was used as anode catalyst and by four times when it was used as cathode catalyst as compared to control MFC using electrode without any catalyst. Almost six times increment in maximum power production of MFC was observed when WO3 was used as catalyst on both the electrodes. Electrochemical analysis of WO3 also proved that it could enhance the current density of the modified electrode owing to its electrochemical catalytic properties. Furthermore, chemical oxygen demand (COD) removal of MFC having WO3 coated electrodes was also observed to be higher, thus suggesting an overall enhancement in the performance of MFC by the use of WO3 as an electrocatalyst.

GRAPHICAL ABSTRACT

Acknowledgements

The help received from Dr. Pritha Chatterjee during the initial experimentation planning is acknowledged.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by Department of Science and Technology, Government of India grant number DST/TSG/NTS/2015/99].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.