380
Views
5
CrossRef citations to date
0
Altmetric
Articles

Struvite production from anaerobic digestate of piggery wastewater using ferronickel slag as a magnesium source

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 429-443 | Received 08 Nov 2018, Accepted 09 Jun 2019, Published online: 24 Jun 2019
 

ABSTRACT

This study aimed to fully recover ammonia contained at a high concentration in anaerobic digestate of piggery wastewater (ADPW) by forming struvite. As magnesium and phosphorus sources, ferronickel slag (FNS) and K2HPO4 were used, respectively. By leaching 200 g L−1 of FNS with 3.0 M H2SO4, 10,309 mg L−1 of magnesium ions were extracted, and this acid-leachate of FNS (FNSL) also contained 5965 mg L−1 of total iron. In order to simultaneously remove both high concentrations of organic matters in ADPW and iron in FNSL which were known to hinder struvite formation, the mixture of ADPW and FNSL was added with H2O2 at the H2O2/Fe molar ratio of 0.75 and pH 4.0. After Fenton reaction, removal efficiencies of COD and total iron reached 77.36% and 99.89%, respectively. Then COD and an iron-reduced mixture of ADPW and FNSL were added with K2HPO4 satisfying Mg:N:P molar ratio of 1.2:1:1.15 at pH 9.5 to produce struvite for 1 h. From 1 L of ADPW (2.21 g NH3-N), 0.65 L of FNSL (4.65 g Mg2+), and 5.63 g of PO43–P, 46.7 g of precipitates were obtained. Overall removal efficiencies of magnesium, NH3-N, and phosphorus were 98.59%, 94.25%, and 99.97%, respectively. Obtained precipitates were analysed by using XRD, XRF, SEM-EDX and found to be struvite with impurities of potassium and metals. Additionally, the economic feasibility of FNS was assessed by estimating chemical costs of various magnesium sources.

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the authors.

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Additional information

Funding

This study was supported by the R&D Centre for Organic Wastes to Energy Business (under the Wastes to Energy Technology Development Program) funded by the Ministry of Environment, Republic of the Korea (Project No. 2013001580002). This work was supported by NRF (National Research Foundation of Korea) Grant funded by the Korean Government (NRF-2018011304-Global Ph. D. Fellowship Program)

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.