227
Views
2
CrossRef citations to date
0
Altmetric
Articles

Developing the OECD 106 fate testing protocol for active pharmaceuticals in soil

, , , &
Pages 2551-2561 | Received 23 May 2019, Accepted 12 Dec 2019, Published online: 06 Jan 2020
 

ABSTRACT

The ability to determine accurately the fate of APIs in soil is essential for rigorous risk assessment associated with wastewater reuse or biosolid recycling to land, particularly in lower income countries where water and fertiliser is scarce. Four APIs (naproxen, ofloxacin, propranolol and nevirapine) with wide ranging functionality were used as examples in the development of the OECD 106 soil partitioning and/or degradation study, with naproxen used to illustrate applying the full methodology. The data showed key methodological criteria require careful consideration and testing to generate accurate and consistent results. Only glass fibre membranes were suitable for all APIs, without unduly adsorbing APIs to their surface, thus effectively restricting the minimum practical pore size to 0.7 µm. Polypropylene plastic centrifuge tubes were shown to be suitable, with careful determination of recoveries. Direct injection liquid chromatography-mass spectrometry could reliably resolve all 4 APIs down to less than µg L−1 in soil solutions, although allowance for matrix effects via standard additions was required in some cases. Greatest analytical challenges were found for the highest molecular weight API with the greatest affinity for sorption to surfaces (ofloxacin). Key variables that can impact on partitioning such as solution pH and dissolved organic carbon concentrations were shown to vary within tests over time and should be accounted for.

GRAPHICAL ABSTRACT

Acknowledgements

The authors acknowledge Dr Paul McCormack for his assistance with the LC-MS determinations.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The funding for this research was provided by the Astra Zeneca Global SHE Research Programme.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.