443
Views
2
CrossRef citations to date
0
Altmetric
Articles

Comparison of different pretreatment methods on phosphorus release and recovery as struvite from excess sludge

, &
Pages 161-169 | Received 21 Apr 2021, Accepted 30 Jul 2021, Published online: 25 Aug 2021
 

ABSTRACT

Recovering phosphorus (P) from excess sludge of wastewater treatment plants (WWTPs) has attracted considerable attention. An efficient P release method is undoubtedly critical for a satisfactory recovery performance. In this study, the effectiveness of three sludge pretreatment methods, i.e. anaerobic digestion (AD), EDTA-anaerobic digestion (EA) and ultrasound combined with EA (U-EA), on P release and struvite recovery from excess sludge was investigated. The results showed that different pretreatment methods resulted in the different characteristics of P release and recovery. For P release, the highest P release rate (57.14% of sludge total phosphorus, TP) was achieved by U-EA pretreatment, followed by EA and AD. Furthermore, U-EA was beneficial for sludge disintegration and reduction, by which the mixed liquor suspended solids (MLVSS) reduction rate reached 42.00% at a specific energy of 110,000 kJ/kg TS. For the P recovery (in the form of struvite), there was only a little difference in the optimal conditions and P recovery rate (89.29–94.49% of TP in the supernatant). AD pretreatment was beneficial for the purity of products and achieved the highest struvite purity (85.14%), followed by EA (80.95%) and U-EA (77.56%). In summary, the highest recovery rate of TP from excess sludge (53.50% of sludge TP) and struvite yield (26.10 mg/gSS) was obtained by U-EA.

GRAPHICAL ABSTRACT

Acknowledgements

The authors thank the staff of the Xi’an Wastewater Treatment Plant for their help with the sampling.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The data used to support the findings of this study are available from the corresponding author upon request.

Additional information

Funding

This work was supported by the State Key Laboratory of Eco-hydraulics in the Northwest Arid Region of China (no. 2016ZZKT-8).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.