321
Views
1
CrossRef citations to date
0
Altmetric
Articles

Remediation of copper and lead contaminated sediments using iron-based granule biochar: mechanisms and enzyme activity

, ORCID Icon, , , , & show all
Pages 1890-1902 | Received 20 Aug 2021, Accepted 30 Nov 2021, Published online: 23 Dec 2021
 

ABSTRACT

In recent years, there has been a growing concern about heavy metal contamination in sediments. In this study, iron-based granular biochar (MGB) is prepared to remediate Cu and Pb contaminated sediments. Characterizations via scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) show that the rough surface of MGB with abundant pore structures and a large number of oxygen-containing functional groups that facilitate stabilization of Cu and Pb in sediments. Potential mobility and bioavailability of Cu and Pb are investigated using BCR sequential extraction in the 35 day remediation experiment. The XPS results indicate that FeOOH and C-OH play a crucial part in stabilizing heavy metals. Large affinity of FeOOH for Pb allows it to occupy a proportion in F2 while C–OH is attractive to Cu. Changes of pH, organic matter (OM), and available phosphorus (AP) in sediments after adding MGB as well as the relationship between changes and the stable solidification of Cu and Pb are explored. The stable solidification of heavy metals effectively reduces the available phosphorus in sediments. Magnetic and particle properties of the material are used to reduce the impact of MGB aging on sediment environment and separate it from the remediated sediment. Finally, 3% of MGB significantly enhanced the sediment catalase activity in the biological enzyme activity experiment. All findings indicate that MGB is a green and environmentally friendly sediment remediation material with satisfactory potential in synergistically stabilizing heavy metals and phosphorus.

Highlights

  • The complexation of FeOOH with Pb on the surface of MGB fixes it to the reduced state

  • The C-OH on the surface of MGB is more attractive to Cu than Pb

  • MGB effectively mitigates the release of bioavailable phosphorus from sediments to overlying water

GRAPHICAL ABSTRACT

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

All data generated or analyzed during this study are included in this published article.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China (No. 21107041), the Natural Science Foundation of Inner Mongolia (No. 2020MS05028).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.