257
Views
0
CrossRef citations to date
0
Altmetric
Articles

Remediation of the soil contaminated by heavy metals with nano-hydroxy iron phosphate coated with fulvic acid

, , , , &
Pages 4123-4135 | Received 03 Feb 2022, Accepted 12 May 2022, Published online: 29 May 2022
 

ABSTRACT

Heavy metals pose a serious threat and damage to ecological health when released into the environment. n-HFP is usually used to remediate soils contaminated with heavy metals, but its ability to solidify heavy metals is limited. FA has good ability to trap heavy metals due to its abundant oxygen-containing functional groups. However, the solubility of FA in water limits its application in the field of heavy metal removal. In this paper, n-HFP@FA was prepared by co-precipitation method. Through FT-IR and BET analysis, the oxygen-containing functional groups and specific surface area of n-HFP@FA increased due to the addition of FA. The adsorption behaviour of n-HFP@FA on Pb, Cd, and Cu followed the pseudo-second-order and Langmuir isotherm models. In addition, the maximum adsorption capacities of n-HFP@FA for Pb, Cd, and Cu were 371.1, 190.5, and 129.75 mg/g, respectively. As shown by FT-IR and XPS analysis, the main mechanisms of Pb, Cd and Cu removal by n-HFP@FA are: complexation, electrostatic and precipitation. The n-HFP@FA showed high removal rates of Pb, Cd, and Cu in soil leachates of different pH. In the soil remediation experiments, the BCR method and Pearson correlation analysis showed that the acid-soluble, reducible and oxidizable fractions of Pb, Cd, and Cu in the soil were effectively converted into a more stable residual fraction. This study opens up a prospect for the application of n-HFP@FA composites in the remediation of contaminated soil.

GRAPHICAL ABSTRACT

Data availability statement

The authors confirm that the data supporting the findings of this study are available within the article.

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by the Natural Science Foundation of Jiangsu Province (grant number BK20190629), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (grant number KYCX21_2309), the National Nature Science Foundation of China (No. 52004280), and the National Key Research and Development Program of China (No. 2019YFC1904301).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 223.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.