141
Views
4
CrossRef citations to date
0
Altmetric
Articles

Influence of ambient temperature on the heterogeneity of ambient fine particle chemical composition and disease prevalence

&
Pages 27-39 | Received 15 Sep 2015, Accepted 21 Oct 2016, Published online: 14 Nov 2016
 

Abstract

In this study, we present the associations of fine particle nitrate, sulfate, and four organic carbon fractions with ambient temperature in urban and background monitoring sites in the United States for the 2011–2012 period. Nitrate concentrations increased for decreasing temperatures, while sulfate levels increased for temperatures higher than 14 °C. The profiles of organic carbon fractions for different temperatures were comparable to that observed for elemental carbon, a thermally stable and non-reactive component emitted from combustion-related sources. The trends for all parameters were comparable for the nine regions and independent to emission estimates of fine particles and their precursors. These patterns demonstrated that ambient temperature may manipulate fine particulate composition. These differences may be augmented by rising temperatures due to changing climate. Considering the causal associations between particulate pollution and pulmonary and cardiovascular diseases, changes in the composition of particulate pollution may imply adjustments on the human health impacts.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 371.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.