200
Views
6
CrossRef citations to date
0
Altmetric
Articles

Modelling electrical conductivity of soil from backscattering coefficient of microwave remotely sensed data using artificial neural network

, , &
Pages 842-859 | Received 30 Apr 2013, Accepted 18 Nov 2013, Published online: 14 Feb 2014
 

Abstract

Soil salinity is one of the main agricultural problems which expand to larger areas. Soil scientists categorize salinity level by electrical conductivity (EC) measurement. However, field measurements of EC require extensive time, cost and experiences. Remote sensing is one suitable option to investigate and collect spatial data in larger areas. Many researches estimated soil moisture through microwave, but there are fewer studies which mentioned about direct relationship between EC and backscattering coefficient (BC). Thus, this study aims to propose the estimation of EC directly from BC of microwave. The relationship between EC obtained from field survey and BC from microwave is non-linear, artificial neural network (ANN) is one technique proposed in this study to figure out EC and BC relationship. ANN uses multilayer of interconnected processing resulting in EC value with high accuracy which is acceptable. For this reason, ANN model can be successfully utilized as an effective tool for EC estimation from microwave.

Acknowledegments

We would like to express our sincere gratitude to Suan Sunandha Rajabht University, Thailand, for providing financial support to this research.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.