83
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Dynamic light scattering study of the ultrasonication of P(VDF-TrFE): A new model

, , , &
Pages 649-658 | Received 28 Jun 2017, Accepted 31 Jul 2017, Published online: 22 Sep 2017
 

ABSTRACT

The purpose of this paper is to understand the mechanisms occurring during the ultrasonication of the copolymer poly(vinylidenedifluoride-trifluoroethylene). In these experimental conditions, the polymer adopts a core–shell structure and its hydrodynamic diameter is measured by dynamic light scattering. The results show that, without covalent bonds breakage, the hydrodynamic diameter decreases with ultrasonication time and a smaller size population appears. This evolution is reversible in a matter of days. A new two-step mechanism is proposed to describe this phenomenon: first the erosion of a core–shell structure and second the contraction of the core. Beyond shedding a new light on the phenomena occurring during the sonication of polymers used in nanocomposites elaboration, this work also strongly questions the traditional techniques used to study the degradation of polymers, which use the hydrodynamic diameter measurement to determine the molecular weight.

Additional information

Funding

This work was partly funded by the French Ministry for Education and Research (C. T. PhD grant). The authors declare that they have no conflict of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 492.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.