181
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Numerical analysis of the effects of material parameters on the lubrication mechanism for knee prosthesis

&
Pages 79-89 | Published online: 25 Jan 2007
 

Abstract

The tibial component of current knee prostheses made of ultra high molecular weight polyethylene (UHMWPE) has a high degree of wear that causes knee inflammation, prosthesis loosening and subsequent replacement in not more than 15 years. In order to know which UHMWPE material properties have more influence on wear, a steady state lubrication model with non-Newtonian synovial fluid has been studied through numerical solution. The results show that UHMWPE has a very high elastic modulus that makes difficult a well lubricated artificial joint and induces the formation of very thin lubricating films between the moving surfaces with the same magnitude of roughness components. This study shows that the use of deformable porous materials in the tibial component could cause the lubricating film thickness to be higher than the average roughness and the pressure levels to be lower than the one predicted for UHMWPE. These two facts imply friction and wear reduction.

Acknowledgements

To Dr Fernando A. Saita for his invaluable discussions and suggestions, to Universidad Nacional de Entre Ríos for its financial support by PID 6057 and to Professor Alicia Gambelin and Professor Diana Waigandt for their support in editing this article in English.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.