509
Views
44
CrossRef citations to date
0
Altmetric
Original Articles

A micromechanical procedure for modelling the anisotropic mechanical properties of brain white matter

, , , &
Pages 249-262 | Received 11 Mar 2008, Accepted 24 Aug 2008, Published online: 27 Apr 2009
 

Abstract

This paper proposes a micromechanics algorithm utilising the finite element method (FEM) for the analysis of heterogeneous matter. The characterisation procedure takes the material properties of the constituents, axons and extracellular matrix (ECM) as input data. The material properties of both the axons and the matrix are assumed to have linear viscoelastic behaviour with a perfect bonding between them. The results of the modelling have been validated with experimental data with material white input from brainstem by considering the morphology of brainstem in which most axons are oriented in longitudinal direction in the form of a uniaxial fibrous composite material. The method is then employed to examine the undulations of axons within different subregions of white matter and to study the impact due to axon/matrix volume fractions. For such purposes, different unit cells composed of wavy geometries and with various volume factions have been exposed to the six possible loading scenarios. The results will clearly demonstrate the undulation and axon volume fraction impacts. In this respect, undulation affects the material stiffness heavily in the axon longitudinal direction, whereas the axons' volume fraction has a much greater impact on the mechanical properties of the white matter in general. Also the results show that the created stresses and strains in the axons and matrix under loading will be impacted by undulation change. With increase in undulation the matrix suffers higher stresses when subjected to tension, whereas axons suffer higher stresses in shear. The axons always exhibit higher stresses whereas the matrix exhibits higher strains. The evaluated time-dependent local stress and strain concentrations within a repeating unit cell of the material model are indicative of the mechanical behaviour of the white tissue under different loading scenarios.

Acknowledgements

The authors would like to acknowledge the Air Force Office of Scientific Research for the financial support of this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.