369
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

Drug transport in artery walls: A sequential porohyperelastic-transport approach

&
Pages 263-276 | Received 31 Jul 2007, Accepted 05 Sep 2008, Published online: 27 Apr 2009
 

Abstract

A simulation framework for drug-eluting stents (DES) is presented that simulates the two distinct operational phases of a DES: stent deployment is simulated first, a mechanical porohyperelastic/elasto-plastic/contact analysis. This analysis calculates the interstitial fluid velocity as the result of interstitial fluid pressure gradients and mechanical deformations of the vessel wall. The deformed geometry, interstitial fluid velocity field and porosity field are extracted and used as input for the drug release simulation: a reaction–advection–diffusion (RAD) transport analysis calculating the spatial and temporal drug distribution. The advantage of this approach is that the deformed geometry and interstitial fluid velocity field are not assumed a priori, but are actually calculated using a stent deployment simulation. The framework is demonstrated simulating a DES in an idealised, 3D vessel. Varying mechanical and transport properties based on literature data are assigned to each of the three layers in the wall. The results of the drug release simulation for a period of one week show that the drug distributes longitudinally but will remain in the proximity of the stented area.

Acknowledgements

The authors acknowledge support of the Dean's Office of the Stanford School of Engineering. Medtronic Vascular is kindly acknowledged for initial support for developing the simulation framework.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.