297
Views
10
CrossRef citations to date
0
Altmetric
Article

Biomechanical behaviour of cerebral aneurysm and its relation with the formation of intraluminal thrombus: a patient-specific modelling study

&
Pages 1127-1134 | Received 28 Oct 2011, Accepted 19 Dec 2011, Published online: 31 Jan 2012
 

Abstract

Cerebral aneurysm is an irreversible dilatation causing intracranial haemorrhage with severe complications. It is assumed that the biomechanical factor plays a significant role in the development of cerebral aneurysm. However, reports on the correlations between the formation of intraluminal thrombus and the flow pattern, wall shear stress (WSS) distribution of the cerebral aneurysm as well as wall compliance are still limited. In this research, patient-specific numerical simulation was carried out for three cerebral aneurysms based on magnetic resonance imaging (MRI) data-sets. The interaction between pulsatile blood and aneurysm wall was taken into account. The biomechanical behaviour of cerebral aneurysm and its relation with the formation of intraluminal thrombus was studied systematically. The results of the numerical simulation indicated that the region of low blood flow velocity and the region of swirling recirculation were nearly coincident with each other. Besides, there was a significant correlation between the slow swirling flow and the location of thrombus deposition. Excessively low WSS was also found to have strong association with the regions of thrombus formation. Moreover, the relationship between cerebral aneurysm compliance and thrombus deposition was discovered. The patient-specific modelling study based on fluid–structure interaction) may provide a basis for future investigation on the prediction of thrombus formation in cerebral aneurysm.

Acknowledgements

This research is partially supported by Beijing Nature Science Foundation (3102008).

Conflict of interest statement: There is no conflict of interest of any kind.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.