617
Views
21
CrossRef citations to date
0
Altmetric
Articles

A superellipsoid-plane model for simulating foot-ground contact during human gait

, , &
Pages 954-963 | Received 21 Oct 2014, Accepted 05 Aug 2015, Published online: 01 Sep 2015
 

Abstract

Musculoskeletal models and forward dynamics simulations of human movement often include foot–ground interactions, with the foot–ground contact forces often determined using a constitutive model that depends on material properties and contact kinematics. When using soft constraints to model the foot–ground interactions, the kinematics of the minimum distance between the foot and planar ground needs to be computed. Due to their geometric simplicity, a considerable number of studies have used point–plane elements to represent these interacting bodies, but few studies have provided comparisons between point contact elements and other geometrically based analytical solutions. The objective of this work was to develop a more general-purpose superellipsoid–plane contact model that can be used to determine the three-dimensional foot–ground contact forces. As an example application, the model was used in a forward dynamics simulation of human walking. Simulation results and execution times were compared with a point-like viscoelastic contact model. Both models produced realistic ground reaction forces and kinematics with similar computational efficiency. However, solving the equations of motion with the surface contact model was found to be more efficient (~18% faster), and on average numerically ~37% less stiff. The superellipsoid–plane elements are also more versatile than point-like elements in that they allow for volumetric contact during three-dimensional motions (e.g. rotating, rolling, and sliding). In addition, the superellipsoid–plane element is geometrically accurate and easily integrated within multibody simulation code. These advantages make the use of superellipsoid–plane contact models in musculoskeletal simulations an appealing alternative to point-like elements.

Acknowledgments

The authors would like to acknowledge the financial support given by the Fundação para a Ciência e a Tecnologia (FCT) and by the UT Austin|Portugal Program. Special thanks go to Dr Arian Vistamehr and Dr Jon Slowik for their reviewing comments and to Dr Nick Fey for the assistance with the walking simulations.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.