99
Views
0
CrossRef citations to date
0
Altmetric
Articles

MusIC method enhancement by a sensitivity study of its performance: Application to a lower limbs musculoskeletal model

, &
Pages 159-168 | Received 25 Jun 2018, Accepted 24 Oct 2018, Published online: 24 Dec 2018
 

Abstract

Providing a biomechanical feedback during experimental sessions is a real outcome for rehabilitation, ergonomics or training applications. However, such applications imply a fast computation of the biomechanical quantities to be observed. The MusIC method has been designed to solve quickly the muscle forces estimation problem, thanks to a database interpolation. The current paper aims at enhancing its performance. Without generating any database, the method allows to identify optimal densities (number of samples contained in the database) with respect to the method accuracy and the off-line computation time needed to generate the database. On a lower limbs model (12 degrees of freedom, 82 muscles), thanks to this work, the MusIC method exhibits an accuracy error of 0.1% with an off-line computation time lower than 10 minutes. The on-line computation frequency (number of samples computed per second) is about 58 Hz. Thanks to these improvements, the MusIC method can be used to produce a feedback during an experimentation with a wide variety of musculoskeletal models or cost functions (used to share forces into muscles). The interaction between the subject, the experimenter (e.g. trainer, ergonomist or clinician) and the biomechanical data (e.g. muscle forces) in experimental sessions is a promising way to enhance rehabilitation, training or design techniques.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.