286
Views
3
CrossRef citations to date
0
Altmetric
Articles

Pair-wise vs group-wise registration in statistical shape model construction: representation of physiological and pathological variability of bony surface morphology

ORCID Icon, &
Pages 772-787 | Received 19 May 2018, Accepted 18 Feb 2019, Published online: 01 Apr 2019
 

Abstract

Statistical shape models (SSM) of bony surfaces have been widely proposed in orthopedics, especially for anatomical bone modeling, joint kinematic analysis, staging of morphological abnormality, and pre- and intra-operative shape reconstruction. In the SSM computation, reference shape selection, shape registration and point correspondence computation are fundamental aspects determining the quality (generality, specificity and compactness) of the SSM. Such procedures can be made critical by the presence of large morphological dissimilarities within the surfaces, not only because of anthropometrical variability but also mainly due to pathological abnormalities. In this work, we proposed a SW pipeline for SSM construction based on pair-wise (PW) shape registration, which requires the a-priori selection of the reference shape, and on a custom iterative point correspondence algorithm. We addressed large morphological deformations in five different bony surface sets, namely proximal femur, distal femur, patella, proximal fibula and proximal tibia, extracted from a retrospective patient dataset. The technique was compared to a method from the literature, based on group-wise (GW) shape registration. As a main finding, the proposed technique provided generalization and specificity median errors, for all the five bony regions, lower than 2 mm. The comparative analysis provided basically similar results. Particularly, for the distal femur that was the shape affected by the largest pathological deformations, the differences in generalization, specificity and compactness were lower than 0.5 mm, 0.5 mm, and 1%, respectively. We can argue the proposed pipeline, along with the robust correspondence algorithm, is able to compute high-quality SSM of bony shapes, even affected by large morphological variability.

Acknowledgements

The authors want to thank Medacta for providing data and Prof. Purang Abolmaesumi for providing Matlab source code of SSM construction using group-wise registration.

Disclosure statement

No party having a direct interest in the results of the research supporting this article has or will confer a benefit on the author(s) or on any organization with which the author(s) is/are associated.

Ethical background

The study involved retrospective anonymized image data provided by Medacta International SA.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.