365
Views
26
CrossRef citations to date
0
Altmetric
Articles

Evaluation of deformation properties of asphalt mixture using aggregate slip test

, &
Pages 542-549 | Received 01 Jul 2014, Accepted 14 Dec 2014, Published online: 06 Feb 2015
 

Abstract

Asphalt mixture is a multiphase particulate material composed of aggregate, asphalt and filler. The deformation property of asphalt mixture is an external reflection of aggregate slip behaviour. To evaluate the high-temperature deformation properties of asphalt mixture, an aggregate slip device was developed and aggregate slip tests were conducted on five asphalt mixtures for different gradations under different test conditions. Four evaluation parameters, the slip failure load (Fs), the slip failure deformation (Ds), slip modulus parameter (M) and slip energy index (SEI), were obtained according to the load–displacement curves. The relationship between these parameters and rut depth (RD) was analysed. The effects of test temperature and asphalt content on slip resistance of asphalt mixture are studied in this research. The results indicate that the parameter Fs has limitations for large nominal maximum particle-size mixture, and SEI is an effective parameter to evaluate the aggregate slip properties for different nominal maximum particle-size asphalt mixtures. SEI has the strongest relationship to RD, which is the best parameter to evaluate the slip deformation behaviour of asphalt mixture. With the increase in asphalt content, SEI has a peak value and a valley value. When the optimum asphalt content is used in asphalt mixture, aggregate skeleton effect and asphalt cohesive force can both reach a high level, and asphalt mixture has the best deformation resistance.

Acknowledgements

This research was supported by Applied Basic Research Project by the Ministry of Transport of China (No. 2014319812151), Natural Science Basic Research Plan in Shaanxi Province of China (No. 2014JQ7242) and the National Natural Science Foundation of China (No. 51008031).

Notes

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 225.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.