538
Views
5
CrossRef citations to date
0
Altmetric
Articles

Polyurethane asphalt binder: a promising candidate for steel bridge deck-paving material

, , , , &
Pages 3920-3929 | Received 09 Sep 2020, Accepted 03 May 2021, Published online: 18 May 2021
 

ABSTRACT

To solve the problems of insufficient flexibility and low-temperature cracking resistance of epoxy asphalt binders in steel bridge deck-paving, a segmented linear polyurethane (PU) asphalt binder with thermoplasticity was synthesised via a chain extension reaction between a PU pre-polymer and chain extender in asphalt matrix. Successful synthesis was confirmed through Fourier transform infrared (FT-IR) spectroscopy. A series of tests were conducted to evaluate the properties of PU binders and determine an appropriate formulation. Asphalt binders with high PU contents (30–50%) perform significantly better than the base binder in terms of the high-temperature, low-temperature and mechanical properties. Further, the synthesised PU binder and other frequently used binders, e.g. epoxy and SBS-modified binders, in bridge deck asphalt pavements were compared. Results show that the synthesised PU binder has remarkably better flexibility and low-temperature property, but worse mechanical and high-temperature properties than an epoxy binder. However, the mechanical and high-temperature properties of the synthesised PU binder are substantially better than those of an SBS-modified binder. These results provide useful information for pavement engineers for selecting steel bridge deck-paving materials.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by National Key R&D Program of China [grant number 2018YFB1600200]; Shaanxi Provincial Communication Construction Group [grant number 17-06K].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 225.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.