788
Views
40
CrossRef citations to date
0
Altmetric
Original Articles

An Improved Approach for 3D Rolling Contact Fatigue Simulations with Microstructure Topology

, , , &
Pages 385-399 | Received 09 Aug 2012, Accepted 24 Nov 2012, Published online: 19 Mar 2013
 

Abstract

Several 2D and 3D numerical models have been developed to investigate rolling contact fatigue (RCF) by employing a continuum damage mechanics approach coupled with an explicit representation of microstructure topology. However, the previous 3D models require significant computational effort compared to 2D models. This work presents a new approach wherein efficient computational strategies are implemented to accelerate the 3D RCF simulation. In order to reduce computational time, only the volume that is critically stressed during a rolling pass is modeled with an explicit representation of microstructure topology. Furthermore, discontinuities in the subsurface stress calculation in the previously developed models for line and circular contact loading are removed. Additionally, by incorporating a new integration algorithm for damage growth, the fatigue damage simulations under line contact are accelerated by a factor of nearly 13. The variation in fatigue lives and progression of simulated fatigue spalling under line contact obtained using the new model were similar to the previous model predictions and consistent with empirical observations. The model was then extended to incorporate elastic–plastic material behavior and used to investigate the effect of material plasticity on subsurface stress distribution and shear stress–strain behavior during repeated rolling Hertzian line contact. It is demonstrated that the computational improvements for reduced solution time and enhanced accuracy are indispensable in order to conduct investigations on the effects of advanced material behavior on RCF, such as plasticity.

ACKNOWLEDGEMENTS

The authors thank Schaeffler Technologies for their support of this project.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 174.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.