141
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Wear Characterization of Mica-Loaded Al-Cu Dual Matrix Particulate Composites

&
Pages 1134-1141 | Received 29 May 2015, Accepted 06 Jan 2016, Published online: 02 Aug 2016
 

ABSTRACT

In recent years, aluminum alloy-and copper alloy-based metal matrix composites are gaining importance in automobile and aerospace industries. Various reinforcements in particulate form can be used in aluminum alloy- and copper alloy-based metal matrix composites, one of which is mica. Mica has a layered or platy texture due to which it acts as a self-lubricating material. The objective of this investigation is to assess the influence of mica reinforcement on the tribological behavior of aluminum-copper (Al-Cu) dual matrix composites when quenched in different media. The results revealed that the compressive strength of mica-filled aluminum-copper (Al-Cu) dual matrix composites decreases as the percentage of mica increases up to 8% in all media. Compressive strength, Vickers hardness, and wear resistance of normalized and water-quenched specimens were greater than that of oil-quenched and non-heat-treated specimens. The worn surfaces of the samples were examined by scanning electron microscopy (SEM).

Acknowledgements

The authors acknowledge Kali Prasad and R. P. Singh (Experimental Mechanics and Materials Laboratory, Indian Institute of Technology [BHU], Varanasi) for their kind help during fabrication and testing of the specimens.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 174.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.