Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 55, 2009 - Issue 8
127
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

Application of the Finite-Volume Method to Study the Effects of Baffles on Radiative Heat Transfer in Complex Enclosures

, , , &
Pages 780-806 | Received 06 Jan 2009, Accepted 19 Feb 2009, Published online: 08 Apr 2009
 

Abstract

A finite-volume radiation model for participating gray media in 2-D and 3-D complex rectangular enclosures with obstacles is developed. The step and the bounded high-order resolution curved-line advection method (CLAM) schemes are examined. Using the blocked-off-region procedure, the present model is capable of predicting radiative heat transfer in enclosures with obstructions and baffles. In order to validate the formulations derived here a square cavity with one or three baffles and finned internal cylinder, then a three-dimensional complex heat recuperator of a pilot plant of biomass pyrolysis with obstructions and baffles, are studied. It should be pointed out that the developed code using the CLAM scheme is accurate and convenient for computational thermal calculations. For the considered heat recuperator, the presence of baffles enhances radiative heat flux and contributes to the increase of the mean medium temperature.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 716.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.